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ABSTRACT 
Data of sufficient quality, quantity and validity constitute a 
sometimes overlooked basis for eMaintenance. Missing data, 
heterogeneous data types, calibration problems, or non-standard 
distributions are common issues of operation and maintenance 
data. Railway track geometry data used for maintenance planning 
exhibit all the above issues. They also have unique features 
stemming from their collection by measurement cars running 
along the railway network. As the track is a linear asset, measured 
geometry data need to be precisely located to be useful. However, 
since the sensors on the measurement car are moving along the 
track, the observations’ geographical sampling positions come 
with uncertainty. Another issue is that different seasons and other 
time restrictions (e.g. related to the timetable) prohibit regular 
sampling. Hence, prognostics related to remaining useful life 
(RUL) are challenging since most forecasting methods require a 
fixed sampling frequency.  

This paper discusses methods for data cleaning, data condensation 
and data extraction from large datasets collected by measurement 
cars. We discuss missing data replacement, dealing with 
autocorrelation or cross-correlation, and consequences of not 
fulfilling methodological pre-conditions such as estimating 
probabilities of failures using data that do not follow the assumed 
distributions or data that are dependent. We also discuss outlier 
detection, dealing with data coming from multiple distributions, 
of unknown calibrations and other issues seen in railway track 
geometry data. We also discuss the consequences of not 
addressing or mishandling quality issues of such data. 
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prognostics, maintenance, Sweden.   

1. INTRODUCTION 
The amount of asset condition data, as well as its availability for 
both practitioners and scientists,  continues to grow. The 
eMaintenance concept has grown along, helping to solve hitherto 
unsolvable maintenance problems. The rapid increase in collected 
asset condition data is due to new possibilities made available by 
digitisation and accelerated technological development.  

However, data do not serve a particular purpose in itself. Data 
need to be put into a context-dependent purpose, and issues such 
as the required levels of detail and aggregation depend on that 
purpose [1]. Quality data need to be “fit for purpose” [2]. As this 
fit depends heavily on the context, there is no single set of agreed 
dimensions for data quality. Accuracy, completeness, consistency 
and timeliness form one of the most frequently used sets [3]. 
The massive data streams come with associated challenges, e.g., in 
the management of big data due to its inherent properties: volume, 
variety, velocity, veracity, and value. For example, pre-processing 
activities to convert field data into a format compatible with the 
intended data analysis may consume the most analysis time. Issues 
such as missing data, heterogeneous data types, calibration 
problems, or non-normality often surface when analysts try to turn 
datasets related to operations and maintenance of technical 
systems into the desired format. Additionally, railway track 
geometry data, which we analyse in this paper, have unique 
features stemming from their collection method. Since the sensors 
on the measurement car are moving along the track, there is 
uncertainty in the geographical sampling position of the 
observations. The sampling intervals are affected by seasonal and 
other restrictions, and the irregular sampling intervals can be 
problematic in condition forecasting for maintenance purposes, 
see, e.g. Bergquist and Söderholm [4, 5].  
In this paper, we study how railway geometry data can be 
processed to make them fit for prediction and maintenance 
planning. We investigate data cleaning, aggregation and 
extraction of information. Issues that we address include missing 
data, auto- and cross-correlation and the data not meeting 
requirements such as distributional and independence 
assumptions, as well as their consequences. We also investigate 
outlier detection, handling data from multiple distributions, 
calibration issues. Finally, we discuss the implications of not 
addressing data quality issues of track geometry data. Data and 
examples in this paper are based on measurements obtained on 
track section 119, which is part of the Swedish Iron ore line, and 
it connects the cities of Boden and Luleå by 35 kilometres of 
track. 
 



2. RAILWAY TRACK DATA 
Track measurement cars record the railway track measurement 
data that we will discuss in this paper, that is, measurement trains 
and trollies that regularly travel along the Swedish railway 
network to measure characteristics of different parts of the 
infrastructure. Both trollies and measurement trains measure 
several geometrical properties of the track, substructure and 
catenary system. These measurements can be used to analyse 
deviations from the designated geometry. The measurement train 
(IMV 200) consists of an engine and a measurement car. The 
measurement car obtains measurements through accelerometers 
mounted in the car body and linear variable differential 
transformers to relate the position of the car body to the axles. 
Each 5 cm of the track length is measured, but these data are post-
processed into observations taken 25 cm apart before they are 
uploaded to the database. Track geometry measurements include 
track gauge, cross-level/cant, twist, and vertical and side 
alignment of the two rails.  

3. DATA BINNING 
The supplier regularly uploads measurement data from the 
measurement cars to the decision support system Optram [6]. The 
Optram system allows data exports for further analyses through 
comma separated files (.csv). One full run of the measurement 
train for track section 119 equates a .csv file with a size of around 
330 MB. For some purposes require such high-resolution data. 
For many other purposes, such large datasets may become too 
bulky, such as when several measurement occasions are to be 
combined. There are also other reasons, elaborated later in the 
paper, to replace the 25 cm observations with other measures by 
binning the data into representative summary statistics. We have 
binned the data into 200 m track segments. In practice, this means 
replacing 800 observations of the 25 cm resolution (or 4 000 of 
the original 5 cm observations) by summary statistics for each 
measurement and segment. Examples of summary statistics 
include the maximum value or the standard deviation of a 
particular property within the track segment. The binning was 
performed in the Microsoft Power BI Desktop® software. Some 
summary statistics such as the average will also improve later 
analyses since the distribution of the average will be closer to the 
normal distribution due to the central limit theorem. The paper 
will, without loss of generality, from this point use the binned 
data for 200 m track segments. Any faults and peculiarities found 
in the binned data would be valid also for the original 
observations. However, in some cases, the binning procedure will 
hide outliers and other problems visible in the 25 or 5 cm data.  

4.  DATA OVERVIEW 
Probably the best first step in finding data peculiarities and 
outliers, real or not, is to plot the data. Many analysis software 
allows for plotting several variables in a matrix of bivariate 
scatterplots. Such a matrix plot is useful since strange patterns as 
well as the correlation between variables become apparent and 
may not be evident in univariate plots. Bivariate plots produced 
one-by-one will time-consuming to produce if the data-set 
includes many variables. Figure 1 shows a matrix of bivariate 
scatter-plots of the largest obtained measurements of the variables 
in each segment. The software we use for all plots in this paper is 
JMP® version 14.1.0. The variables that are plotted in Figure 1 
appear in the following order (the maximum values of): Twist (6m 
base), Twist (3m base), Side shortwave amplitude (right rail), Side 

shortwave amplitude (left rail), Height shortwave amplitude (right 
rail), Height shortwave amplitude (left rail), and Gauge. These 
data were obtained from 103 passes of the measurement cars on 
track section 119 between April in 2007 and February 2019. 

 
Figure 1. Matrix of scatter plots of maximum values on the 
seven variables. 
 
Many methods for multivariate data, base the calculations on the 
assumption that the data follow a multivariate normal distribution. 
Such ideal data would display point swarms in the bi-variate 
scatter plots that are either circular or oval along a diagonal. An 
oval shape would indicate a positive or negative correlation 
between the two variables and a circular shape would indicate 
weak or no correlation. Patterns deviating from this expected 
behaviour indicate issues that the analyst should handle or at least 
consider the consequences of, before further analyses. One 
peculiarity in Figure 1 (e.g. first and second row) is that the data 
seem to separate into two groups for the twist variables. Figure 2 
presents one of these bivariate scatterplots between the two twist 
measures for increased readability (row 2, column 1 in Figure 1). 
Note that the observations are maximum twist errors obtained for 
a 200 m segment. Any zero values would be an indication of 
measurement problems, and likewise, a negative value would 
indicate negative twist readings for a full 200 segment, which is 
not realistic as twist needs to sum to zero over a point defect or 
else there will be a constant lean of the track after the defect. A 
series of positive ones must thus follow a series of negative 
readings. Data cleaning therefore started by removal of ‘strange’ 
twist measurement observations before proceeding to further 
analyses. 
Figure 2 shows that the 3 m twist maximum also seems to be split 
into two groups. The raw data for the 3 m twist maximum thus 
contained data from two distributions. Further analysis revealed 
that measurements of the measurement car for two dates 
(passages) had an average a hundred times lower than the 
remaining 101 indicating some measurement issue. Since these 
erroneous data made up only a small portion of the data, all zero 



values or lower on the 6 m twist maximum observations, and all 3 
m twist maximum observations lower than 20 mm/m were 
removed from further analyses.  

 
Figure 2. Bi-variate scatterplot between the maximum of the 6 
m twist [mm/m] and the 3 m twist [mm/m].  
 
Depending on the analysis software, the analysis to be done at the 
later stage, and the wealth of data, the analyst may select to keep 
or delete the observation. If the analyst chooses to keep the 
observation, with just deleting the faulty variable measurements, 
the other variables’ measurements may still be valid and 
strengthen analyses where those variables are important. Some 
software and analyses do not tolerate incomplete datasets, while 
others perform well if the missing observations are not systematic 
or too many. Some of these use data imputation methods. Again, 
imputation methods still require caution and cannot reconstruct 
cases where there is a systematic structure to the missing data, or 
when there are too few remaining observations. 

5. DISTRIBUTIONAL PROPERTIES 
It is also good practice to study the variables in a univariate plot 
that reveals information about their distributions, such as a 
histogram. Data are never ideally normally distributed, which is a 
common assumption for many analysis methods in later stages. 
Often, the normal distribution describes the data reasonably well; 
other times some properly chosen transformation can make the 
transformed align better with the normal distribution. Without 
such transformations, inference based on a normal probability 
assumption, for instance, estimating the probability that a track 
segment would have a maximum twist above a certain limit, 
would be unreliable.  
For example, the appearance of the histogram in Figure 3 with a 
long right tail suggests that a lognormal distribution would be 
similar and could approximate to the observed distribution. The 
lognormal distribution is reasonable, given that the shortwave has 
a natural zero limit. A log transformation often improves the 
maximum and the standard deviation, but the analyst is always 
well advised to study the transformed data. Outliers may, for 
instance, become more clear after a transformation, so we 
recommend revisiting univariate and matrix plots as in Figure 1 
after transformations to identify and remove potential additional 

‘bad’ observations. The variable in Figure 3 has undergone a log 
transformation, and Figure 4 shows the transformed data. The 
transformed data shows a few suspected outliers to the left that 
need more careful inspection, but the transformation did prove 
useful in making the variable more normally distributed. 

 
Figure 3. Histogram of the maximum amplitude of the 
shortwave of the height of the right rail [mm].   
 

 
Figure 4. Histogram of log-transformed maximum amplitude 
of the shortwave of the height of the right rail. The red curve 
shows the curve fitting of a theoretical normal distribution. 
 
The log transformation belongs to a set of standard variance 
stabilising transformations. It is often the case that there is a 
multiplicative relation between the expected average value of a 
property and its variance. When the variable variation connects 
multiplicatively to the the average, that connection will induce 
analysis problems if not addressed. For multiplicative relations, 
the log transformation is a standard transformation, converting the 
multiplicative relation to an additive one. There are other standard 
transformations too. The standard deviation is χ2 distributed, with 
a long right tail, and the log transformation will make the 
distribution of the variable closer to the normal. Other standard 
transformations include the square root for Poisson distributed 
data or the sine for binomially distributed data.  
Box and Cox [7] suggested finding an appropriate power 
transformation by empirical testing. However, we do not 
recommend using the ‘best’ power transformation that the Box-
Cox test produces without further consideration. Plotting of the 
data may, for instance, reveal that the reasons for the best fit were 
outliers or data stemming from multiple populations such as in 
Figure 2. Standard variance stabilising transformations are found 
in [8]. 



6. OUTLIER DETECTION 
Outliers may lead to faulty conclusions if they are erroneous, but 
may also reveal relevant information. One should, therefore, not 
remove them carelessly. Figure 5 shows observations and 
quarterly averages of the segment max of the 6 m twist variable. 
Two consecutive observations have generated zero variance 
readings due to a fault of the measurement train. The figure also 
shows a model that tries to fit the data for prediction purposes, 
along with a 95% prediction interval and a three sigma upper 
prediction limit. The model includes some tolerance toward noisy 
input data, but the model is designed to restart if conditions have 
improved considerably. Such improvements are not natural but 
would be the results of maintenance actions. The model was also 
made robust versus outliers in that unreasonable condition decline 
was not allowed. The standard deviation may be more substantial 
for some measurements during spring thaw or autumn frost heave, 
but the variation amplitudes will shrink when that period has 
passed. The model, therefore, had a maximum tolerated increase 
rate of the standard deviation for automatic outlier removal due to 
frost.  
As illustrated in Figure 5, the effect on the model of the two 
outliers in combination with the model’s maximum tolerated 
increase rate of the standard deviation can be detrimental for the 
results. The model, based on the average of quarterly 
measurements, tries to restart due to the outliers, but the limit for 
the maximum tolerated standard deviation increase keeps the 
model from adjusting back to the real data. In this case, removal 
of zero standard deviation values would be a simple solution, but 
other outliers, for instance, due to instability due to frost heave or 
thaw will also need handling or a model that is programmed to 
disregard strange measurements obtained from such times. A 
difficulty for an automated model solution there is that frost 
depends on geography and altitude among other things.  

 
Figure 5. Observations (o) and quarter averages (+) of the 
standard deviation of the 6 m twist variable for one segment.  

7. FAULT LOCALISATION 
The coordination of fault diagnosis (i.e. fault detection, fault 
localisation and cause identification) at different maintenance 

echelons, in time, and space is central for eMaintenance. The 
result of an erroneous fault diagnosis on single maintenance 
echelons can be false alarms or undetected faults, while 
insufficient coordination of different maintenance echelons can 
lead to No Fault Found events. One example is when dealing with 
linear assets and combining the use of different measurement 
methods for fault diagnosis, e.g. measurement trains that identifies 
a failure that later on should be corrected by maintenance 
personnel that use manual inspection. Maintenance personnel may 
need to wait for a passing train to pinpoint the issues if, for 
instance, the fault localisation requires that the track is loaded to 
be visible. A precise geographical localisation is, therefore, 
essential from the standpoint of knowing where to locate track 
failures when faults are not evident from visual inspections by the 
maintenance crew. 

The quality of performed fault diagnostics, on single or multiple 
maintenance echelons, at different occasions in time will also 
determine the power of fault prognostics. The time dimension of 
the data is crucial to establish causal relationships between 
measurements and maintenance actions. Both time and position 
are crucial for following deterioration progress over time and 
make predictions, e.g. regarding the remaining useful life. 

Measurement trains possess the property that the instrument is 
travelling along the measured object, rather than being attached to 
it at a fixed spot. The lack of fixation means that the trains can 
assess the condition of assets such as a railway network, with 
measurement update frequencies set by the speed capacity and 
accessibility of the measurement train and staff, as well as its 
access to the track. High-speed measurement trains with top 
speeds of 400 km/h are in use [9], but significantly substantial 
assets can also be measured relatively often using the fastest 
Swedish measurement trains with top speeds of 200 km/h. 
Compared to fixed instruments, the length of track possible to 
survey is vast. Whereas equipment costs and costs for data 
connectivity are rapidly decreasing, an array of instruments 
attached to the railway would currently generate insurmountable 
costs for regular railways. Another benefit of using measurement 
trains, instead of fixed sensors, is that the trains are likely as 
inaccurate for the whole measurement sequence.  

An array of stationary instruments would need to be calibrated 
using the same scales so that data from one position would be 
comparable to data from another. A downside of the moving 
instrument is that the instrument (the measurement train) relies on 
other measurements to connect the measured properties with a 
place along the track. Localisation would seem like a small 
obstacle, but in reality, it can be a significant problem. Figure 6 
shows to measurements of a track twist point defect. The thirteen 
measurements were taken between April 2007 and June 2010. As 
it happens, the one (green) measurement placing the fault in the 
left-most position is also the first measurement, and the 
measurement that is placing the fault most to the right in the 
figure is the latest. The measurements are likely made by a now-
retired measurement train (STRIX) although the data lacks the 
measurement train information for the oldest measurements. The 
fault localisation differs by 25 m.  

Figure 7 shows the last measurement from Figure 6 taken by the 
STRIX measurement train (the curve that has increased most to 
the right, Figure 6) and the next measurement taken on the line. 



Another measurement train, the IMV 100N measurement trolley, 
had obtained this measurement, measured at a later date. 

 
Figure 6. Varying localisation of a track twist (3m) point 
defect. Measurements between April 2007 and June 2010. 

 
The method of using pattern matching and then use an average 
location for all pattern matched measurements has its merits. The 
matching would be a fairly straightforward process if data looked 
like in Figure 6. However, we presume that different post-
processing and different measurement equipment makes a pattern 
matching calibration process complicated. Indeed, attempts to 
align measurements faces significant problems. The studied data 
also display what appears to be a systematic trend, placing the 
fault longer and longer westward (toward Luleå). The 
measurement train location was not based on GPS at this time 
although the measurement trains had such instruments installed. 
Instead, the positioning was produced using dead reckoning from 
known locations. Likely, wheel wear used for the dead reckoning 
is the culprit of the systematic localisation error trend.  
Calibration of the position using known obstacles that would give 
a known pattern in the data, for instance, a switch, or other objects 
of known locations such as ballises could work to anchor the 
measurements to specific locations. This method is also used with 
some regularity already in the pre-processing before the upload to 
the Optram database. If the measurement data included GPS 
locations, localisation could also be improved using map-
matching, see for instance [10]. 

For some purposes, such as for regular maintenance, the exact 
location of point defects are not as important as monitoring the 
decay of a more extended segment, since tamping machines 
require a certain tamp length to be efficient. By binning data into 
segments, the chances are fair that troublesome lengths of the 
track will remain within the segment when bins from different 
measurements are compared. Point defects located on the border 
of two segments will affect the variability of both segments, but in 
reality, the time series seem robust versus such difficulties, 
perhaps due to the slow drift of the localisation error as seen in 
Figure 6.  

Another difficulty of the positioning is that the track kilometres 
that are used to locate objects in the one-dimensional space of the 

track are not always one kilometre in reality. The track location 
along the Swedish railway network uses the km-m system, which 
relates to how far any location is from the Stockholm station. 
Reinvestments may change the design of the track so a particular 
track kilometre may, therefore, be longer or shorter than 1000 m. 
The analyst must be aware of this discrepancy and have a plan for 
how to handle kilometre differences for the binning procedure.  

8. IRREGULAR SAMPLING 
Since the operation of measurement trains are affected by, e.g. 
staff and train schedules, weather conditions, vacations, 
measurement train repairs, the measurements are not obtained at 
equal sampling intervals. The Swedish Transport Administration 
classifies the tracks into inspection classes according to a 
combination of the maximum allowed speed and total yearly 
tonnage. These inspection classes regulate both the allowed 
geometrical tolerances of the track, but also how often the tracks 
need to be measured by the trains. Often, a significant purpose of 
eMaintenance is prognostics and prediction of remaining useful 
life, i.e. when can we expect that a particular asset needs 
maintenance? A typical analysis method for prognoses is to use 
time series modelling. However, time series methods assume that 
data are sampled at regular intervals. Interpolation methods can be 
used to overcome the irregularity issue in the sampling. The 
modelling can then use these interpolated values. Linear 
interpolation, using the last measurements as inputs or some 
splines models have been used for this purpose, see also [4]. 
Interpolation may underestimate the variation in the data or 
produce other unexpected results, so again, we advise caution and 
plotting before drawing conclusions based on such procedures.  

9. REPRODUCIBILITY 
Measurements taken repeatedly can be used to estimate the 
measurement reproducibility. By measurement reproducibility, we 
mean how close two or more measurement results obtained with 
the same equipment and the same operators on the same object. 
Another condition is that the measurements are performed too far 
apart in time. For measurement trains, sack-stations on single 
track lines mean that trains need to turn and travel in the other 
direction. For the Boden-Luleå case, the trains often return the 
next day. The expected real differences between such 
measurements can be considered negligible compared to the 
measurement noise. Hence, one can use these close measurements 
for reproducibility measurements for the specific trains. The 
procedures have most often been to measure the main track when 
travelling from Boden to Luleå, and measure side-tracks for the 
return trip, and not report measurements from the main track. 
However, once in a while, both trips are measured, and those 
measurements can be used for estimating the reproducibility 
uncertainty, see also [5].  
Faulty calibrations will affect both measurements, and such faults 
will not be found using such comparisons. Calibration errors and 
differing measurement precisions between trains are important if 
the prognostic models need measurements from all trains since 
many prognoses methods rely on historical data. Note, however, 
that seeking differences between different measurement trains 
usually require longer waits between measurements, which 
increases the background noise for such calculations.  



10. DISCUSSION AND CONCLUSION 
In this paper, we discuss cleaning or pre-processing of track 
geometry measurement data used for maintenance planning in the 
Swedish railway network. We outline important steps and 
problems in the data pre-processing needed before proceeding to 
other advanced analysis methods. We also illustrate some real 
data examples from track section 119 that connects the cities of 
Boden and Luleå by 35 kilometres of track. The data cleaning 
steps involve some knowledge and understanding of the 
measurement systems as well as the measured properties, e.g., to 
erase outliers, to select proper transformations or to use binning 
and select suitable binning sizes. While such knowledge often is 
critical for generating valuable analysis results, we hope that we 
have described the procedure in such a way that the analyst will 
understand when subject-matter knowledge is needed, and when 
general data handling practices may be used.  
We have summarised some of the challenges and available 
solutions Table 1.  
Table 1. Examples of challenges and potential solutions in data 
cleaning. 

Challenge  Solution  
Skewness  Transformation  
Non-normality, but 
symmetric  

Empirical distributions with percentiles 
balancing alpha and beta risks  

Dependence  

Increase sampling interval 
Fit model and use residuals 
Adjust limits based on empirical 
percentiles 

Positioning error   Data binning and use of distribution 
measures for distances  

Uneven sampling 
intervals Interpolation 

Uneven sample sizes  Inter-measurement alignment and missing 
data treatment 

 
Turning to the studied case, the geometry data together with 
inspection data and other data relevant for maintenance planning 
exhibit at least four out of the 5Vs that constitute challenges for 
big data processing: volume, variety, (velocity), veracity, and 
value, see, e.g. [11, 12]. The main issues that the analyst needs to 
handle in the pre-processing of track geometry data are many, and 
countermeasures involve many steps. These steps may comprise 
of data binning (e.g., into 200 m segments), data overview and 
outlier identification and handling (e.g. by use of univariate, 
bivariate and multivariate approaches), The steps may also include 
variable transformations, handling of spatial and temporal 
localisation issues (e.g. binning, pattern matching, and point asset 
fitting). The irregular sampling frequency may need handling (e.g. 
by using time series modelling in combination with models for 
interpolation and extrapolation): Finally, reproducibility issues 
may need attention (e.g. identification of measurements that one 
can treat as repeated measures). In this paper, we provide 
examples of how these issues can be handled to clean data for 
future use in enhanced diagnostic and prognostic models 

important for eMaintenance applications. The value of enhanced 
diagnostics on single and multiple maintenance echelons can be 
measured by reduced false alarm rates, lower degree of undetected 
faults, improved fault localisation, and a reduced number of No 
Fault Found events. Additionally, enhanced prognostics provides 
improved remaining useful life estimation valuable in 
maintenance planning.  
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